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A model of filtration is considered which takes into account blockage (colmatatiorL) 
and erosion (suffosion) of the pores using a generalized relationship between per- 
meability and porosity. 

It is known that the relaxation phenomena which occur during the filtration of h~avy 
petroleum oils, polymer solutions, and other systems in porous media can be caused by various 
properties of the filtering liquid and of the porous medium itself. The establishment of the 
reasons for the dependence of the relaxation phenomena on these characteristics is a problem 
of basic importance in the theory of filtration, the solution of which would make it possible 
to carry out qualitative and quantitative analyses of the relaxation phenomena and to predict 
and control them based on practical requirements. 

In the known hypothetical models of relaxation in filtration such a relationship has 
not been investigated in explicit form. Nevertheless, in a number of cases the models give 
completely acceptable results and identify new qualitative aspects of the filtration pro- 
cess [i-4]. 

Relaxation phenomena during the filtration of real liquids can be caused by various mech- 
anisms. Up to now they have been studied with insufficient completeness, and estimates have not 
been made of their effects on the relaxation phenomena. Separate attempts to explain t le mech- 
anism of relaxation filtration have been made in [4-8]. As follows from the discussion in 
[6], one of the possible mechanisms is the "hardening" of the particles which are contained 
in the liquid being filtered and the "closing" of the pores by them. Other filtration mech- 
anisms which lead to relaxation have been analyzed in [7]. It is shown that in [8] tilat 
the qualitative features of the filtration of suspensions and colloidal solutions consist 
of a reduction in the effective permeability of the porous medium as a result of the deposi- 
tion of the particles of the disperse phase of the solution being filtered onto its su~:faces. 
The reduction of the permeability of the porous medium is equivalent to the occurrence of 
an effective liquid flow which varies with time, which is reflected from the inlet laye.~: of 
the porous medium. Thus, the effect of the closing of the pores by the particles of the dis- 
perse medium is one of the possible causes for the occurrence of the relaxation phenomena. 

The purpose of the present work is to analyze the effect of blockage (colmatationl of 
the pores of the skeleton of the porous medium by impurity particles contained in the filtrate 
and their subsequent erosion (suffosion) on the features of the filtration flows. The~e im- 
purities may be particles of tars, asphaltenes, paraffins, etc., contained in various petroleum 
oils, and solid particles of suspensions, the droplets in emulsions, etc. Such a problem 
has already been considered in [9], where, however, only a very generalized scheme of ~iltra- 
tion was investigated. In schemes where choking (closing) occurs it is essential to t~ke 
into account changes in porosity, and as a result of these, changes in permeability al~o. 
This was taken into account in [9] to a linear approximation. In the general case the de- 
pendence of the permeability on the porosity has a more complex form. Several formulas have 
been given in [i0, ii] which express the filtration coefficient in terms of the porosity. 
Of these formuals the most widely used is the Carman--Kozeny formula 

The process of closing the pores by the particles from the filtering liquid and fleeing 
(suffosion) depend both on the geometry of the particles and pores and also on the dynamic 

8s 
K (8) = k - - ,  k := 8.2d~m. (I) 
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conditions of filtration. Following[9], let us consider the process of filtration allowing 
for blockage and erosion for the case of a generalized relationship between the permeability 
and the porosity, modeling the porous medium by a continuum of traps for the contaminant par- 
ticles. Each trap corresponds to one pore. If the pore is closed by a particle, it is as- 
sumed that it is captured by the trap. 

The probability of capture W 0 by the trap (pore) of even one contaminant particle and 
of its being set free W I in unit time are assumed (following [9]) in the form: 

W ;  = mo, W i  = ~i  tVPl, ( 2 )  

where ~0 and ~i are empirical constants; [7p[ is the modulus of the pressure gradient. The 

selection of W 0, W i in such a simplified form is explained by the attempt to obtain physical 
results. The first of the equations (2) means that the capture of the contaminant occurs 
even in the absence of a pressure drop, while the second equation means that the opening of 
the pore can occur only as a result of the removal of the obstructing particle under the in- 
fluence of the applied pressure drop. However, in the general case the relationship (2) can 
be made more precise by taking intoaccount various factors influencing the blockage and erosion. 

A change in the number of free traps per unit time occurs as a result of taking into 
account the freeing of the occupied traps and the capture of contaminent by the free traps: 

dN/dt  -= (No - -  N) oh IVPI - -  N~ (3) 

When allowance is made for a generalized dependence of the filtration coefficient on 
the porosity, Darcy~s law assumes the form 

v = K (~) ivPi, ( 4 )  

where K(e) is given by Eq. (I). 

The porosity of the medium e is defined in terms of the concentration of pores N and 
their free volume ~ as e = 8N. Equation (3) can therefore be written in the form 

ds ld t  = (~o - -  8) m~ IVPI ~ 8%,  (5) 

where g0 = 8N is the porosity accessible for filtration when all the pore-traps are free. 

Equations (4) and (5) form a system by means of which the change in the porosity e with 
time is defined under unsteady-state filtration conditions. The filtration relationship for 
various conditions of loading of the system can be determined from Eq. (4). In principle 
it is not difficult to determine the relationship between v and 7p for any arbitrary flow 
conditions. For simplicity, a typical case is considered below when a difference in either 
the pressure drop or the filtration rate is specified. 

Difference in the Pressure Gradient. Suppose that a steady-state process is established 
in the system (in the porous medium) corresponding to an initial pressure drop IVp~ At 
the initial moment of time t = 0 a shift is created in the pressure gradient from IVp~ to 
IVpWl. The corresponding steady-state values of the porosity are denoted by e ~ and e'. In 
this case it is found from Eq. (5) that 

---- a' -t- (8o __ #) exp (--  t/~'), "~' = (~i IVp'l + o,o)-~. (6)  

By substituting (6) into (4) and using the Carman--Kozeny formula, it is found that 

v = k -  [Sl + (~:o _ ~,) ex p ( _  t l , ' ) p  
[ 1 - -  e'  - -  (e ~ - -  e ')  exp ( - -  t /~ ' )p  

Ivp'l, (7) 

In the general case, relationship (7) expresses Darcy's law with a filtration coefficient 
which varies with time. It can be represented in the form 

k(~,)3 l - - a ~ e x p ( - - @ ) + a ~ e x p ( - - ~ , )  - - a sexp  ( _ @ _ t )  ]VP"[, (8)  
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at:=3~, a2==3~Q z, a3= ~3, bl~-20, bo=O 2, 

9~ = 1 _ _  ~ot~,,  0 = ( ~ ' -  ~~ - - ~ ' ) .  

According to Eq. (8), with a constant shift of the pressure gradient IVp'l the cate of 
filtration v relaxes to a new steady value corresponding to Vp'. The relaxation time x' in 
Eq. (8) depends on IVp'l, and consequently for different values of Vp' the filtratio]~ rate 
v will relax with different characteristic relaxation times. 

It is of interest to investigate the dynamics of v with respect to t under various con- 
ditions of loading of the system, and in particular when there is a step increase or decrease 
of Vp. Suppose that a shift is made from Vp ~ to Vp' (IVp'l > IVp~ The relaxation time 
x' is then determined by the value of Vp' and its value will be smaller than the relaxation 
time corresponding to a transition process due to a shift Vp from some value to Vp ~ This 
means that if the pressure gradient initially rises from Vp ~ to Vp' and then later falls again 
to Vp ~ the time to establish steady-state flow in the second case will be greater than in 
the first. This hysteresis-type relationship between v and Vp is observed in the filtration 
of heavy petroleum oils and polymer solutions [12]. The considerable differences in the times 
of establishing pressures and depletions in reservoir models which are observed durirg filtra- 
tion in these systems are also explained to some extent by this phenomenon. 

The steady-state dependence of v on IVpl has the following form, as can be seen from 
Eq. (5) ,  

kS,~ 
v --  're'-----:(1 - -  ]vpl. ( 9 )  

Taking into account the steady-state value of the porosity E corresponding to Ivpl, 
namely,VpI:8=eool]Vpl/(oiIVplq-oo), it is found from Eq. (9) that 

(eo%) ,VP, 
(o~ ivp] + % ) k o ,  (1 - -~o)Ivpl  + %1 ~ ( l o )  

The dependence of v on IVpl according to Eq. (I0) is shown schematically in Fig. i. At 
large pressure drops Vp (or generally speaking, when ~zlVpl >> m0), the relationship has an 
asymptote 

- -   oi2 I  pl- 3 -  % . 
I - -  8 0 0) I / 

( 1 1 )  

As can be seen from (Ii), the asymptote intersects the IVp[ axis at IVp01 = (3 - e0)m0/ 
[(i - e0)mz], which can be interpreted as a limiting pressure gradient. 

In the case of a linear dependence of the permeability (filtration coefficient) on the 
porosity, the asymptote intersects the IVpl axis at IVp01 = w0/w z. From the condition (3 -- 
~0)/(i -- E 0) > i it is obvious that the "limiting pressure gradient" is larger in the case 
of a nonlinear relationship for the permeability (filtration coefficient) than in the case 
of the analogous linear dependence. This fact can be regarded as the effect of the ircrease 
in the deviation from the classical Darcy's law in the case of a nonlinear relationship be- 
tween the permeability (filtration coefficient) and the porosity. 

Difference in the Flow Rate. Now assume that the rate of filtration shifts from v ~ to 
v', and the pressure gradient relaxes to a new constant value. 

By substituting (4) into (5) and use of the Carman--Kozeny equation (i) the follo#ing 
equation is arrived at: 

. . . . . . .  [ _ _  ]  io, 
a s  (Co _ ~) (1 - -  e)~ ~' _ e COo, ~, = - -  ( z 2 )  
dt  e ~ Ook 
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By integrating (12), it is found that 

~ + 7~ ~ - -  -r (2 + %) ~z + ~,, (2% + 1 ~,..~ - -  ~,~o 
(13) 

where g0 is the steady-state value of the porosity corresponding to the rate of filtration v ~ 

Equation (13) makes it possible to find the changein g at various values of t. The 
particular value of e is introduced as the upper limit of the integral (13). Evaluating the 
integral (13) in explicit form depending on the nature of the solution of the equation (with 
respect to ~) 

~ + ~%~ - -  ,; (2 + %) ~ + ~ (2% + 1) ~--  ~,~o =- o, (14) 

produces the equation for the determination of ~. 

i. Suppose that the roots of (14) are real and different. 
gration in (13) with the initial condition of g = go at t = 0, 
with respect to E: 

Then carrying out the inte- 
the following equation is found 

4 4 (15) 
18o H le -- cz,~J~ = exp (-- COot ) H ~ -- cz~ i~  , 

n = l  n-- ' l  

where ~n are the coefficients for expanding the function under the integral as a vulgar frac- 
tion, i.e., 

~ + v~ ~ - -  -r (2 + %) ~2 + ~ (2% + I) ~--  V~o --" '~ t 

2. Suppose that Eq. (14) has two real roots a I, a 2 and two complex conjugate roots a a = 
~ + a~i, =~ = a3--=~i, i= ]/~-~, Then by carrying out the integration in (13), the following 
equation is obtained for determining g: 

~l = 2 ~ ,  % = (~)~ + (~)~. 

The case of two pairs of complex conjugate roots of Eq. (14) does not occur. 

Equations (15) and (16) are solved numerically. The results of the calculations accord- 
ing to Eq. (16) with shifts in the filtration rate corresponding to changes in the parameter 

from 0.i to 0.6, 0.8, or 1.0 are shown in Fig. 2. As can be seen from this figure, asteady- 
state value of the porosity of e ~ = 0.28 corresponds to ~ = 0.i. As ~ shifts to 0.6, 0.8, 
and 1.0, the porosity relaxes to the corresponding steady-state values of 0.345, 0.353, and 
0.359. 

The rate of change of ~(t) is determined by the value of the relaxation time. As can 
be seen from Eqs. (15) and (16), it is possible to select ~i as the characteristic time which 
governs the rate of change of g with respect to time. The curves in Fig. 2 show clearly that 
the change in g with time occurs according to a relaxation relationship. 

Calculations of the change in porosity can also be carried out with Eq. (13). It is 
interesting to note that the steady-state value of the porosity corresponding to the filtra- 
tion rate v' is the root of Eq. (14). Consequently, the integral in (13) will be an improper 
integral. When t + ~ it is obvious that e + e' and the value of the integral tends to --~. 
When t § ~ it is found analogously in Eqs. (15) and (16) that e + a n for any value of n. The asymp- 
totics of Eqs. (15) and (16) for t + ~ characterize the stageof the emergence into the steady state 

of filtration corresponding to the specified shift of the velocity v'. 
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Fig. i. Steady-state dependence of the flow value 
v on the pressure gradient IVpl; IVp01 is the point 
of intersection of the asymptote with the axis; 
IVpl is the limiting pressure gradient; tan ~ = 
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Fig. 2. Relaxation of the porosity e as v changes from v ~ to v' for 
various values of y = mzv'/(m0k): i) y = 0.6; 2) y = 0.8; 3) y = 1.0. 

Fig. 3. Dependence of P = ml]Vp[/m 0 on mot for changes of 7 from 0.i 
to 0.6 (curve i), 0.8 (curve 2), or 1.0 (curve 3). 

The calculation of the change in the pressure gradient is carried out from the formula 

IVpl = z~e,(1 - -  v ' ,  ( 1 7 )  
k8 B 

where use is made of E = E(t) which is found as the solution of Eq. (15) or (16). In dimen- 
sionless units, Eq. (17) assumes the form 

P- ~ -  ~)--v,(1 p= ~o~ lvpl (18) 
S 3 CO 0 

Let us consider the change in the pressure gradient for a step-wise change of y from 
one value to another. By using the calculations of E = e(t) given above for changes of y from 
0.I to 0.6, 0.8, and 1.0, the curves for the changes in the parameter P calculated by Eq. (18) 
are given in Fig. 3 as a function of mot. As can be seen from this last figure the dimen- 
sionless pressure gradient decreases monotonically to some constant value corresponding to 
the steady state. At large values of the shift in y the initial and local values of P are 
correspondingly increased. When ~ is reduced from one constant value to another, the pressure 
gradient is calculated analogously. As can be seen from Eqs. (15) and (16) the character- 
istic time of the process transition for a change of the filtration rate is defined as m~ I 
In contrast to the case when there is a shift in the pressure gradient, in this case tap re- 
laxation time is a constant quantity, and does not depend on the value of the pressure gra- 
dient. 
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Thus, taking into account the nonlinearity of the dependence of the permeability (filtra- 
tion coefficient) on the porosity leads to a number of special features in the way in which 
the nature of the filtration process varies when blockage and erosion are taken into account. 

It should be noted that generalization of the arguments given above to other relationships 
between the permeability (filtration coefficient) and the porosity does not present any spe- 
cial difficulty. Thus, the problem which has been considered can be easily extended to the 
formulas of E. A. Zamarin and I. I. Zauerbrei and other empirical relationships linking the 
permeability and the porosity, information on which is given in [i0, ii]. Any difficulties 
which arise in doing this will be of a purely computational nature. 

Further improvements of the model which has been proposed can be made in several direc- 
tions. It seems that it would be very interesting to establish a more detailed structure 
of the probability of capture W 0 by a trap of even a single particle of the impurity and of 
its liberation W l per unit time. This would make it possible to carry out a more detailed 
investigation of the physical phenomena occurring in the process of filtration taking into 
account blockage, erosion, and other phenomena which lead to relaxation-type changes in the 
filtration characteristics under dynamic conditions. In particular, the latter could include 
complex rheological properties of the skeleton of the porous medium and of the filtering liq- 
uid, interactions of the liquid with the walls of the pores, and complex structures of the 
porous media (crack formation, nonhomogeneity, anomalously low permeability, etc.). 

NOTATION 

d, effective diameter; K(e), filtration coefficient; k, coefficient in Eq. (i); N, num- 
ber of free traps; No, number of traps, equal to the number of pores per unit volume of the 
medium; p, pressure; v, filtration rate; W0, probability of capturing (W I is the probability 
of setting free) even one particle by a trap; t, time; e., porosity; go, e', porosities corre- 
sponding to the steady states specified by IVp~ (v ~ and IVP'l (v'); E0, porosity accessible 
for filtration when all the pores are open; ~, viscosity of the filtrate; m0, ~i, empirical 
constants in Eq. (2); T', relaxation time of the porosity, defined in Eq. (6). 
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